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Dynamical phase transition of a one-dimensional kinetic Ising model with boundaries
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The Glauber model on a one-dimensional lattice with boundaries~for the ferromagnetic and antiferromag-
netic cases! is considered. The large-time behavior of the one-point function is studied. It is shown that at any
temperature, the system shows a dynamical phase transition. The dynamical phase transition is controlled by
the rate of spin flip at the boundaries, and is a discontinuous change of the derivative of the relaxation time
towards the stationary configuration.
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I. INTRODUCTION

The principles of equilibrium statistical mechanics a
well established. But thermal equilibrium is a special ca
and little is known about the properties of systems not
equilibrium, for example, about the relaxation towards
stationary state. Some interesting problems in nonequ
rium systems are nonequilibrium phase transitions descr
by phenomenological rate equations, and the way the sys
relaxes to its steady state. As mean-field techniques gene
do not give correct results for low-dimensional system
people are motivated to study exactly solvable stocha
models in low dimensions. Moreover, solving on
dimensional systems should, in principle, be easier. Ex
results for some models on a one-dimensional lattice h
been obtained, for example, in Refs.@1–14#. Different meth-
ods have been used to study these models, including ana
cal and asymptotic methods, mean-field methods, and la
scale numerical methods.

The Glauber dynamics was originally proposed to stu
the relaxation of the Ising model near equilibrium states
was also shown that there is a relation between the kin
Ising model at zero temperature and the diffusion annih
tion model in one dimension. There is an equivalence
tween domain walls in the Ising model and particles in
diffusion annihilation model. Kinetic generalizations of th
Ising model, for example, the Glauber model or the K
wasaki model, are phenomenological models and have b
studied extensively@15–20#. Combination of the Glaube
and the Kawasaki dynamics has also been consid
@21–23#.

In Ref. @24#, an asymmetric generalization of the zer
temperature Glauber model on a lattice with boundaries
introduced. It was shown there that, in the thermodyna
limit, when the lattice becomes infinite, the system sho
two kinds of phase transitions. One of these is a static ph
transition, the other a dynamic one. The static phase tra
tion is controlled by the reaction rates, and is a discontinu
change of the behavior of the derivative of the station
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magnetization at the end points, with respect to the reac
rates. The dynamic phase transition is controlled by the s
flip rates of the particles at the end points, and is a disc
tinuous change of the relaxation time towards the station
configuration. Other generalizations of the Glauber mo
consist of, for example, alternating isotopic chains and al
nating bound chains~see Ref.@25#, for example!. People
have also considered phase transitions induced by boun
conditions~see Refs.@26–28#, for example!.

The scheme of the paper is as follows. In Sec. II, t
model is introduced, the rates are determined using the
tailed balance, and the steady state configuration of the m
netization is obtained. In Sec. III, the dynamical phase tr
sition of the system is investigated, and it is shown tha
does show a dynamical phase transition at any temperat

II. KINETIC ISING MODEL ON A ONE-DIMENSIONAL
LATTICE WITH BOUNDARIES

The model being addressed is the Glauber model o
one-dimensional lattice with boundaries. In the Glaub
model, the interaction is between three neighboring si
Spin flip brings the system into equilibrium with a heat ba
at temperatureT. A spin is flipped with a ratem51
2tanh(2bJ) whenever the spins of both of its neighborin
sites are in the same direction and is flipped with a ratel
511tanh(2bJ) whenever the spins of both of its neighbo
ing sites are in the opposite direction.@Hereb51/(kBT).# At
domain boundaries, spins are flipped with unit rate.~By the
rate of any change, it is of course meant the probability
that change during the infinitesimal time intervaldt divided
by dt.) So the interactions can be written as

↑ ↑ ↑ → ↑ ↓ ↑ and ↓ ↓ ↓ → ↓ ↑ ↓ with ratem,

↑ ↓ ↑ → ↑ ↑ ↑ and ↓ ↑ ↓ → ↓ ↓ ↓ with ratel,

↑ ↑ ↓
 ↑ ↓ ↓ and↓ ↓ ↑
 ↓ ↑ ↑ with rate 1.

Consider a lattice withL sites and the Glauber dynamic
as the interaction. The spin of the first site may flip with t
following rates:

↑ ↓→ ↓ ↓ with rateg1 ,

↑ ↑→ ↓ ↑ with rateg2 ,
©2002 The American Physical Society29-1
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↓ ↑→ ↑ ↑ with rateg3 ,

↓ ↓→ ↑ ↓ with rateg4 ,

and the spin of the last site may flip with the following rate

↓ ↑→ ↓ ↓ with rateh1 ,

↑ ↑→ ↑ ↓ with rateh2 ,

↑ ↓→ ↑ ↑ with rateh3 ,

↓ ↓→ ↓ ↑ with rateh4 .

It is known that the time evolution equations for the on
point functions in the bulk are expressed in terms of only
one-point functions@15#. To make this true for the bound
aries as well, the following relations should hold:

g11g45g21g3 ,

h11h45h21h3 . ~1!

One may give a physical meaning to the parametersgi
andhi , by demanding the detailed balance to hold. Consi
the energyE of the system to be

E52S B1s11BLsL1J(
i 51

L21

sisi 11D , ~2!

then, the detailed balance demands

R~s1s2→s18s2!exp$b~B1s11Js1s21••• !%

5R~s18s2→s1s2!exp$b~B1s181Js18s21••• !%,

~3!

whereR(s1s2→s18s2) is the rate of the spin flip of the firs
site froms1 to s18 . Equation~3! shows that

R~s1s2→s18s2!5 f ~s2!exp$2bs1~B11Js2!%. ~4!

The exponential term in the above equation is at most lin
in terms ofs1. So,

R~s1s2→s18s2!5 f̄ ~s2!@12s1tanhb~B11Js2!#. ~5!

Then,

g15 f̄ ~21!@12tanhb~B12J!#,

g25 f̄ ~1!@12tanhb~B11J!#,

g35 f̄ ~1!@11tanhb~B11J!#,

g45 f̄ ~21!@11tanhb~B12J!#. ~6!

The condition of exact solvability~1! ~the closure of time
evolution equation of one-point functions! leads to

f̄ ~1!5 f̄ ~21!. ~7!
05612
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This means that theinertia of the first spin against spin flip
does not depend on the second spin. A similar expression
be written for the rate of the spin flip of the last site.

For the infinite lattice, the Glauber model has a parti
reaction-diffusion interpretation. If the spins of the neighb
ing sites are different~at a domain wall!, one may consider
the link between those sites as a particle. When the spin
the neighboring sites are the same~no domain wall!, one
may consider the link between the sites as a vacancy. T
the Glauber model turns into a reaction-diffusion model:

d d→ s s with rate 11tanh~2bJ!,

s s→ d d with rate 12tanh~2bJ!,

d s
 s d with rate 1,

where a particle~a vacancy! is denoted byd (s). For the
Glauber model with boundaries, to have a consistent part
model, one has to impose

g15g3 , g25g4 ,

h15h3 , h25h4 . ~8!

Then, the injection and extraction of particles at the first s
are

d →s with rateg15g3 ,

s→ d with rateg25g4 , ~9!

and the injection and extraction of particles at the last site

d→ s with rateh15h3 ,

s→ d with rateh25h4 . ~10!

Now, consider the general case where only the conditi
~1!, that guarantee the closure of the time evolution, are
isfied. We have

^ṡk&522^sk&1~^sk11&1^sk21&!tanh~2bJ!, 1,k,L,

^ṡ1&52~g21g3!^s1&1~g12g2!^s2&1~g32g1!,

^ṡL&52~h21h3!^sL&1~h12h2!^sL21&1~h32h1!.
~11!

The steady-state solution to Eq.~11! is

^sk&5D1z1
k1D2z2

k2L21 , ~12!

where

z15z2
215tanh~bJ!. ~13!

It can be shown that in the thermodynamic limit (L→`),

D15
g12g3

~g12g2!z1
22~g21g3!z1

,

9-2
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D25
h12h3

~h12h2!z1
22~h21h3!z1

.

D1 and D2 are continuous functions of the rates. So t
behavior of^sk& near the ends of the lattice varies contin
ously with rates, and there is no static phase transition.

III. THE DYNAMICAL PHASE TRANSITION
OF THE SYSTEM

The average magnetization per sitem(t) is

m~ t !5
1

L (
k51

L

^sk~ t !&. ~14!

In the thermodynamic limit, the boundary terms are neg
gible, and

d

dt
m~ t !52@ tanh~2bJ!21#m~ t !. ~15!

Then, similar to the case of the Glauber model on an infin
lattice, the average magnetization does not show any p
transition. But, as it will be shown, the system does exh
dynamical phase transition.

The homogeneous part of Eq.~11! can be written as

^ṡk&5hk
l ^sl&. ~16!

The eigenvalues and eigenvectors of the operatorh satisfy

E xk522xk1tanh~2bJ!~xk111xk21!, kÞ1,L,

E x152~g21g3!x11~g12g2!x2 ,

E xL52~h21h3!xL1~h12h2!xL21 , ~17!

where the eigenvalue and the eigenvector have been den
by E andx, respectively. The solution to these is

xk5az1
k1bz2

k , ~18!

where

2~E1g21g3!~az11bz2!1~g12g2!~az1
21bz2

2!50,

2~E1h21h3!~az1
L1bz2

L!1~h12h2!~az1
L211bz2

L21!50,
~19!

andzj ’s satisfy

E5221tanh~2bJ!~z1z21!. ~20!

So, z1z251. Using this and Eq.~20!, one can eliminateE,
and arrive at
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z12L$22g22g31z@g12g22tanh~2bJ!#2z21tanh~2bJ!%,

3$22h22h31z@h12h22tanh~2bJ!#

2z21tanh~2bJ!%,2zL21$22g22g31z21@g12g2

2tanh~2bJ!#2ztanh~2bJ!%,

3$22h22h31z21@h12h22tanh~2bJ!#

2ztanh~2bJ!%50. ~21!

Obviously, zj561 satisfies Eq.~21!. But these solutions
lead to

xk5zk~a1bk!. ~22!

And this form forxk generally does not satisfy the bounda
conditions atk51,L. Equation ~21! can be written in the
form

G~z!5F~z!2F~z21!50, ~23!

where

F~z!5z12L$22g22g31z@g12g22tanh~2bJ!#

2z21tanh~2bJ!%3$22h22h31z@h12h2

2tanh~2bJ!#2z21tanh~2bJ!%. ~24!

For a phase solution to Eq.~21!, z5eiq, we have

E52212 tanh~2bJ!cosq. ~25!

In the thermodynamic limit (L→`), in any neighborhood of
z51 there exists a phase solution to Eq.~21!. The supermum
of the eigenvalues determines the relaxation time toward
stationary average-density profile. So, if all of the solutio
are phase,

t5@2212 tanh~2bJ!#21. ~26!

Suppose now that there exist solutions that are not pha
Consideruzu.1. Then forL→`, Eq. ~21! becomes

$22g22g31z21@g12g22tanh~2bJ!#2z tanh~2bJ!%

3$22h22h31z21@h12h22tanh~2bJ!#

2z tanh~2bJ!%50. ~27!

In general, equation complex solutions. First assume that
solutions are real. Changing the rates, one may arrive
situation where the above equation has a real solution gre
than 1. The transition occurs at the point where this equa
has a solution equal to 1. When the system has passed
point, the relaxation time becomes

t5@2212~L1L21!tanh~2bJ!#21, ~28!

whereL is that solution to Eq.~27!, which is greater than 1
@Here we have assumedJ.0, the ferromagnetic case. Fo
the antiferromagnetic caseJ,0; L is that solution to
9-3
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Eq. ~27! which is less than21.# Puttingz51 in Eq.~27!, at
least one of the following equations should hold:

2@12tanh~2bJ!#2g22g450,

2@12tanh~2bJ!#2h22h450. ~29!

If the temperature is zero, Eq.~29!, for example, givesg2
1g450. Remembering that these parameters are rates,
arrives atg25g450. So, at zero temperature, the soluti
cannot passz51. But at any other temperature,
2tanh(2bJ) is positive, and changing the parameters,g2
1g4 can be made more than or less than 12tanh(2bJ).

If one uses the expressions~6! and ~7! for gi ’s, then Eq.
~29! becomes

22 tanh~2bJ!1 f̄ @ tanhb~J2B1!1tanhb~J1B1!#50.
~30!

Putting f̄ 51, theinertia of the first spin against the spin fli
is the same as those of the bulk spins. In this case, howe
Eq. ~30! has no solution. That is, there is no phase transiti
In fact, Eq.~30! has no solution forf̄ <1. For f̄ .1, however,
it may have a solution.

It is seen that the parametersg2 andg4 ~or h2 andh4) are
control parameters of the dynamical phase transition.
parametersg1 and g3 ~or h1 and h3) do not have any con
tribution in the dynamical phase transition. The ratesg1 and
g3 are the rates of the disappearance of the domain w
But we note that the eigenvector corresponding toz51 is a
configuration where all the spins are the same (sk;zk51.! It
is this configuration that corresponds to the largest value
E, which determines the relaxation time, and in this config
ration, there is no domain wall. The disappearance rate
this configuration determines the relaxation time towards
steady state, andg1 andg3 ~or h1 andh3) are irrelevant to
this rate. In the particle-vacancy picture, this means that
rate of change of vacancy to particle is important, since
configuration corresponding to the maximum value ofE is
the empty lattice.

This argument is true forJ.0, the ferromagnetic case.
J,0, then the relaxation time is determined by the value
E at the smallest possible value ofz ~which is less than
21), and the transition occurs asz521 becomes a solution
to Eq. ~27!. It is not difficult to see that in this caseg11g3
~or h11h3) determines the phase transition. The reasonin
the same as above, except that here the configuration d
mining the relaxation time is that corresponding toz521,
which means that the spins are alternating. So, in this c
figuration there are no↑↑ or ↓↓ configurations andg2 andg4
~or h2 andh4) are irrelevant.

Now consider the general case where the solutions to
~27! are complex. Considering the expression forE in terms
of z, it is seen that there may be a larger value for Re(E) if

Re~z1z21!.2. ~31!
05612
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~This is for the ferromagnetic case,J.0.! Putting z5X
1 iY, it is seen that the boundary of the two phases is

Y56~X21!A X

22X
. ~32!

The roots of the first bracket of Eq.~27! satisfy

~22g22g3!X1g12g22tanh~2bJ!2~X22Y2!tanh~2bJ!

50,

@22g22g322X tanh~2bJ!#Y50. ~33!

The rootY50 of the second equation corresponds to the r
solutions previously considered. There exists, however,
other solution. Using this solution, and Eq.~32!, one arrives
at

@4 tanh~2bJ!221g21g3#@g12g22tanh~2bJ!#

1~22g22g3!tanh~2bJ!50. ~34!

Specifically, at zero temperature we have

~g12g2!~g21g3!22~g21g4!50, ~35!

where Eq.~1! has been used. It is clear that this boundary c
be passed~as an example, one can consider the special c
g15g3 andg25g4), so that the system does have a dynam
cal phase transition even at zero temperature.

For the antiferromagnetic case (J,0), equations corre-
sponding to~34! and ~35! are

@g12g22tanh~2bJ!#@22g22g314 tanh~2bJ!#

2~22g22g3!tanh~2bJ!50, ~36!

and

~g42g3!~g21g3!22~g31g1!50, ~37!

respectively, and it is easily seen that there is a phase tra
tion even at zero temperature.
9-4
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